Adam原理及实现
Adam是一种梯度下降的算法,综合考虑了梯度的一阶矩、二阶矩,计算更新步长。 直接上伪代码:
更新规则
计算出梯度 $ g_{t} $
首先,计算梯度的指数移动平均数 $ m_{t} $
$ m_{t} = \beta_{1}m_{t-1} + (1 - \beta_{1}g_{t})$ 其中$m_{0}$初始化为0, $\beta_{1} $为指数衰减率,控制权重分配,通常取0.9
其次,计算梯度平方的指数移动平均数 $v_{t}$
$v_{t} = \beta_{2}v_{t-1} + (1 - \beta_{2}g_{t}^{2})$ 其中$v_{0}$初始化为0, $\beta_{2}$为指数衰减率,控制梯度平方的权重分配,通常取0.999
第三,由于$m_{0}$初始化为0,导致训练初期阶段$m_{t}$偏向0,需要进行偏差纠正, 降低偏差对训练初期的影响
$\hat{m_{t}} = m_{t}/(1 - \beta_{1}^{t})$
第四,与$m_{0}$类似,$v_{0}$也会出现偏差,需要进行纠正
$\hat{v_{t}} = v_{t}/(1 - \beta_{2}^{t})$
最后更新参数,初始学习率乘梯度均值,然后除以梯度方差的平方根
$\theta_{t} = \theta_{t-1} - \alpha * \hat{m_{t}} / (\sqrt{\hat{v_{t}} + \epsilon})$
代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Adam:
def __init__(self, loss, weights, lr=0.001, beta1=0.9, beta2=0.999, epislon=1e-8):
self.loss = loss
self.theta = weights
self.lr = lr
self.beta1 = beta1
self.beta2 = beta2
self.epislon = epislon
self.get_gradient = grad(loss)
self.m = 0
self.v = 0
self.t = 0
def minimize_raw(self):
self.t += 1
g = self.get_gradient(self.theta)
self.m = self.beta1 * self.m + (1 - self.beta1) * g
self.v = self.beta2 * self.v + (1 - self.beta2) * (g * g)
self.m_hat = self.m / (1 - self.beta1 ** self.t)
self.v_hat = self.v / (1 - self.beta2 ** self.t)
self.theta -= self.lr * self.m_hat / (self.v_hat ** 0.5 + self.epislon)
def minimize(self):
self.t += 1
g = self.get_gradient(self.theta)
lr = self.lr * (1 - self.beta2 ** self.t) ** 0.5 / (1 - self.beta1 ** self.t)
self.m = self.beta1 * self.m + (1 - self.beta1) * g
self.v = self.beta2 * self.v + (1 - self.beta2) * (g * g)
self.theta -= lr * self.m / (self.v ** 0.5 + self.epislon)
参考自:https://zhuanlan.zhihu.com/p/32698042
This post is licensed under CC BY 4.0 by the author.